Shrinkage Estimators for Damping X12-ARIMA Seasonals

نویسندگان

  • Don M. Miller
  • Dan Williams
چکیده

3 We examine the effect of damping X-12-ARIMA's estimated seasonal variation on the accuracy of its seasonal adjustments of time series. Two methods for damping seasonals are proposed. In a simulation experiment, we generated time series data for each of 90 distinct experimental conditions that, in aggregate, characterize the variety of monthly series in the M3-competition. X-12-ARIMA consistently overestimated the actual seasonal variation by an amount consistent with statistical theory. Damping seasonals reduced X-12-ARIMA's estimation error by as much as 73%, and under no conditions was estimation error increased beyond a trivial amount. Improvement depended primarily on the degree to which random variation in a series dominated seasonal variation. One of the proposed methods was somewhat more accurate, and is somewhat more complex, than the other. Other factors examined include the presence or absence of trend, asymmetry in the seasonal pattern, and constant vs. increasing seasonal variation over time. In an analysis of real data-the 1428 monthly series of the M3-competition-damping X-12-ARIMA seasonals prior to forecasting (1) reduced the average forecasting MAPE by 5.4% to 2.1% and (2) improved forecasting accuracy for 59% to 64% of the series, depending on the forecasting horizon. This research suggests that damping X-12-ARIMA seasonals leads to more accurate seasonal adjustments of time series, thus providing a more reliable basis for policy-making, forecasting, and the evaluation of forecasting methods by researchers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Method for Estimating the Variances of X11-arima Estimators

The X11-ARIMA method, or X12 method based on the latter procedure, with their various variants are the most commonly procedures used for estimating the seasonally adjusted data and the trend-cycle. Both of these procedures fail to provide estimates for the variances of the estimators that they produce. In this paper we propose a simple general method, based on linear approximation, for estimati...

متن کامل

Empirical Comparison of Two Methods for Non-Gaussian Seasonal Adjustment

This study compares two new seasonal adjustment methods designed to handle outliers and structural changes: X-IZARIMA and GAUSUM-STM. X12-ARIMA is a successor to the X-ll-ARIMA seasonal adjustment method, and is being developed at the U.S. Bureau of the Census (Findley et al. (1988)). GAUSUM-STM is a non-Gaussian method using time series structural models, and was developed for this study based...

متن کامل

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003